Читайте также

Главная  Лучшие    Популярные   Список  
задачи » Математика

Задача по математике №16

Математические задачи, не врошедшие в ЕГЭ Каждый голосующий на выборах вносит в избирательный бюллетень фамилии n кандидатов. На избирательном участке находится n+1 урна. После выборов выяснилось, что в каждой урне лежит по крайней мере один бюллетень и при всяком выборе (n+1) -го бюллетеня по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.

Решение
Возьмем произвольный бюллетень из (n+1) -й урны. Пронумеруем кандидатов, фамилии которых встречаются в этом бюллетене. Предположим, что требуемое в задаче не выполнено. Тогда в k -й урне ( k=1 , n ) найдется бюллетень, не содержащий фамилии k -го кандидата. Набор этих бюллетеней вместе со взятым вначале бюллетенем из (n+1) -й урны противоречит условию задачи.
Нет комментариев. Почему бы Вам не оставить свой?
Ваше сообщение будет опубликовано только после проверки и разрешения администратора.
Ваше имя:
Комментарий:
Смайл - 01 Смайл - 02 Смайл - 03 Смайл - 04 Смайл - 05 Смайл - 06 Смайл - 07 Смайл - 08 Смайл - 09 Смайл - 10 Смайл - 11 Смайл - 12 Смайл - 13 Смайл - 14 Смайл - 15 Смайл - 16 Смайл - 17 Смайл - 18
Информация о загрузке файлов
Допустимые форматы файлов: gif, jpg, jpeg, png
Максимальный размер загруженных файлов модуля: 100 MB
Максимально допустимый размер файла для загрузки: 1 MB
Максимально допустимая ширина изображения: 500 px
Максимально допустимая высота изображения: 500 px
Количество одновременно загружаемых файлов: 10

0 Файлов загружено


Секретный код:
Секретный код
Повторить:

Поиск по сайту

Поиск

Авторизация


Добро пожаловать,
Аноним

Регистрация или входРегистрация или вход
Потеряли пароль?Потеряли пароль?

Ник:
Пароль:


Содержание:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Правообладателям
Образование