Читайте также

Главная  Лучшие    Популярные   Список   Добавить
Статьи » ОБЖ

Оценка зон воздействия при разгерметизации емкостей и сосудов

ОБЖ варийная разгерметизация оборудования для хранения, транспортирования и переработки веществ, находящихся в газообразном и жидком состоянии, приводит к выбросу содержимого аппаратов в окружающую среду. Размеры образующихся при этом опасных зон существенным образом зависят от физико-химических свойств поступающих в атмосферу веществ, условий их хранения в емкостях и т. д.

Рассмотрим способы хранения веществ в жидком состоянии.
Вещества, у которых критическая температура существенно ниже температуры окружающей среды, хранят в специальных теплоизолированных резервуарах (криогенных резервуарах с высокоэффективной вакуумно-порошковой теплоизоляцией) в сжиженном состоянии [сжиженный природный газ (СПГ), водород, кислород, азот и т. д.]. Пары этих веществ, неизбежно образующиеся при таком способе хранения, либо снова сжижаются, либо сбрасываются в атмосферу. При разгерметизации такого сосуда к жидкости из окружающей среды поступает тепловой поток, что приводит к немедленному вскипанию жидкости и переходу ее в газообразное состояние. Интенсивность процесса парообразования пропорциональна скорости подвода теплоты, которая, в свою очередь, зависит от условий теплообмена криогенной жидкости с атмосферой и подстилающей поверхностью, на которую произошел пролив.
Вещества, у которых критическая температура больше температуры окружающей среды, а температура кипения меньше, тоже хранятся в жидком состоянии, причем в отличие от веществ первой группы для ожижения их необходимо только сжать (СПГ, пропан, бутан, аммиак, хлор и т. д.). При разгерметизации емкости и потери давления в ней часть жидкости мгновенно испаряется, а оставшаяся охлаждается до температуры кипения при атмосферном давлении. Так, пропан может храниться при температуре 26,9 °С и давлении 1 МПа. После разгерметизации резервуара и падении давления до атмосферного температура оставшейся (неиспарившейся) жидкости будет –42,1°С. Неиспарившаяся жидкость может разлиться по подстилающей поверхности, и дальнейший процесс испарения будет происходить за счет притока теплоты из окружающей среды.
Вещества, у которых критическая температура и температура кипения больше температуры окружающей среды, находятся при атмосферном давлении в жидком состоянии. При поступлении таких веществ в атмосферу интенсивность процесса испарения определяется разностью парциальных давлений пара над поверхностью жидкости и в окружающей среде. Так как температура окружающей среды может лежать в широком диапазоне –40...+50 °С (т. е. переменна для различных территорий и времен года), то одно и то же вещество можно отнести к этой или предыдущей группе. Так, температура кипения бутана при атмосферном давлении около 0° С, поэтому при отрицательных температурах окружающей среды бутан находится в жидком состоянии, а при положительных – в газообразном.
Таким образом, в зависимости от термодинамического состояния жидкости, находящейся в сосуде, возможны три пути протекания процесса при его разгерметизации:
–при больших энергиях перегрева жидкости или сжатых газов (паров) жидкость может полностью переходить во взвешенное мелкодисперсное и парообразное состояние с образованием взрывоопасных смесей;
–при низких энергетических параметрах жидкости происходит спокойный ее пролив на твердую поверхность, а испарение осуществляется путем теплоотдачи от твердой поверхности;
–промежуточный режим, когда в начальный момент происходит резкое вскипание жидкости с образованием мелкодисперсной фракции, а затем наступает режим свободного испарения с относительно низкими скоростями.
Для определения размеров зон воздействия необходимо вначале спрогнозировать, какое количество жидкости или газа поступит в окружающую среду при том или ином виде аварии. Приближенно количество мгновенно испарившейся жидкости
т =(HT-HX)/rx
где т –доля мгновенно испарившейся жидкости в адиабатическом приближении при температуре T, НT–удельная энтальпия жидкости при температуре T; Нх – удельная энтальпия жидкости в точке кипения при атмосферном давлении; rх –удельная скрытая теплота парообразования в точке кипения при атмосферном давлении.
На рис. 8.2 представлены данные о доле мгновенно испарившейся жидкости, полученные по приведенному соотношению.
На втором этапе расчета необходимо с учетом рельефа местности, климатических условий, планировки площадки рассчитать процессы растекания и испарения жидкости, а также рассеивание паров пролитой жидкости. Результатом такого расчета должны быть нанесенные на ситуационный план поля концентраций паров пролитой жидкости. На плане местности отмечают также динамику процесса рассеивания паров, прогнозируют изменение концентрации в различных точках местности по времени. Расчет рассеивания газообразных веществ в атмосфере см. ОНД–86.
При проливах СДЯВ внешние границы заражения определяют по ингаляционной токсодозе. В качестве ее используют среднюю смертельную дозу L50, среднюю поражающую, вызывающую поражения ниже легкой степени у 50 % пораженных E50, среднюю выводящую из строя I50; среднюю пороговую P50.

Рис.8.2. Доля мгновенно испарившейся жидкости в адиабатическом приближении
1 – этилен; 2 – пропан; 3 – хлор и аммиак; 4 – бутан; tхр – температура хранения

Для характеристики воздействия на людей принимают дозу D, вычисляемую для определенной точки,

где С(t) –концентрация СДЯВ в воздухе, соответствующая моменту времени (t), t–время пребывания в данной точке.
В качестве критерия поражающего действия дозы, превышение которой определяет участки территории, соответствующие зоне заражения, используют токсодозу, характеризующую степень токсичности яда. Токсодоза различной степени тяжести поражения (L50,I50,E50,P50) при фиксированном времени экспозиции для каждого СДЯВ является постоянной величиной.
Решение задачи турбулентной диффузии СДЯВ для наземных источников может быть представлено в виде:

где D–токсодоза СДЯВ; x,y–расстояние по осям Х и Y; Q– количество вещества, перешедшее в первичное или вторичное облако; и – скорость ветра; λ – константа, зависящая от вертикальной устойчивости атмосферы; ψ– параметр, определяемый соотношением и и х (пропорционален х-1/2).
При заданном значении D это соотношение можно рассматривать как уравнение для определения совокупности точек (X, Y), образующих изолинию равных значений токсодозы. При прогнозировании размеров зоны заражения СДЯВ по токсодозе можно использовать методику РД 52.04.253–90, основанную на вышеприведенном уравнении. Порядок расчета приведен в приложении 2.2.

Дополнительно по данной категории

23.10.2012 - Отличные рефераты на заказ: учиться с нами легко!
23.10.2012 - Соответствие диссетртации всем требованиям
23.01.2010 - Структуры Гражданской обороны.
23.01.2010 - Задачи Гражданской обороны
23.01.2010 - Организация и планирование эвакуации
Нет комментариев. Почему бы Вам не оставить свой?
Ваше сообщение будет опубликовано только после проверки и разрешения администратора.
Ваше имя:
Комментарий:
Смайл - 01 Смайл - 02 Смайл - 03 Смайл - 04 Смайл - 05 Смайл - 06 Смайл - 07 Смайл - 08 Смайл - 09 Смайл - 10 Смайл - 11 Смайл - 12 Смайл - 13 Смайл - 14 Смайл - 15 Смайл - 16 Смайл - 17 Смайл - 18
Секретный код:
Секретный код
Повторить:

Поиск по сайту

Поиск

Авторизация


Добро пожаловать,
Аноним

Регистрация или входРегистрация или вход
Потеряли пароль?Потеряли пароль?

Ник:
Пароль:


Содержание:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Правообладателям
Образование