Читайте также

Главная  Лучшие    Популярные   Список   Добавить
Статьи » Математика » Алгебра

Тригонометрические функции

Алгебра Тригонометрические функции — вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x), секанс (sec x) и косеканс (cosec x), последняя пара функций в настоящее время сравнительно малоупотребительна (про ещё менее употре***емые функции см.: Редко используемые тригонометрические функции). В англоязычной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x. Обычно тригонометрические функции определяются геометрически, но можно определить их аналитически через суммы рядов или как решения некоторых дифференциальных уравнений, что позволяет расширить область определения этих функций на комплексные числа.

Определение тригонометрических функций для острых углов


Во многих учебниках элементарной геометрии до настоящего времени тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB — треугольник с углом α. Тогда:
  • Синусом α называется отношение AB/OB (противолежащего катета к гипотенузе)
  • Косинусом α называется отношение ОА/OB (прилежащего катета к гипотенузе)
  • Тангенсом α называется отношение AB/OA (отношение противолежащего катета к прилежащему)
  • Котангенсом α называется отношение ОА/AB (отношение прилежащего катета к противолежащему)
  • Секансом α называется отношение ОB/OA (гипотенузы к прилежащему катету)
  • Косекансом α называется отношение ОB/AB (гипотенузы к противолежащему катету)

    Построив систему координат с началом в точке O, направлением оси абсцисс вдоль OA и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее.

    Данное определение имеет некоторое педагогическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач про тупоугольные треугольники


    История слова "синус":

    Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива»), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение.
  • Дополнительно по данной категории

    11.03.2010 - История квадратных уравнений манэ
    11.03.2010 - Квадратные уравнения
    10.03.2010 - Упрощение уравнений и сведение к линейному
    10.03.2010 - Упрощение уравнений и сведение к линейному
    10.03.2010 - Линейные уравнения
    Нет комментариев. Почему бы Вам не оставить свой?
    Ваше сообщение будет опубликовано только после проверки и разрешения администратора.
    Ваше имя:
    Комментарий:
    Смайл - 01 Смайл - 02 Смайл - 03 Смайл - 04 Смайл - 05 Смайл - 06 Смайл - 07 Смайл - 08 Смайл - 09 Смайл - 10 Смайл - 11 Смайл - 12 Смайл - 13 Смайл - 14 Смайл - 15 Смайл - 16 Смайл - 17 Смайл - 18
    Секретный код:
    Секретный код
    Повторить:

    Поиск по сайту

    Поиск

    Авторизация


    Добро пожаловать,
    Аноним

    Регистрация или входРегистрация или вход
    Потеряли пароль?Потеряли пароль?

    Ник:
    Пароль:


    Содержание:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
    Правообладателям
    Образование