Читайте также

Главная  Лучшие    Популярные   Список   Добавить
Статьи » Химия

Сложность строения атомов.

Химия В конце XIX в. изучение электрических разрядов в газах положило конец представлению об атоме как простейшей неделимой частице элемента.

Было обнаружено, что если из стеклянной трубки, в оба конца которой впаяны металлические электроды, откачать воздух до давления менее 0,01 мм рт. ст. и подвести к электродам напряжение несколько тысяч вольт, то стекло трубки начинает светиться слабым зеленоватым светом. Свечение трубки вызывается невидимыми для глаза лучами, исходящими от отрицательно заряженного электрода — катода — и получившими вследствие этого название катодные лучи. Изучение свойств этих лучей показало, что они действуют на фотографическую пластинку, вызывают свечение стекла и других материалов, способны вращать вертушку. В магнитном и электрическом полях катодные лучи отклоняются от прямолинейного направления, причём в электрическом поле — в сторону положительно заряженного электрода (рис. 1). Твёрдое тело под действием катодных лучей приобретает отрицательный электрический заряд. Всестороннее изучение свойств этих лучей показало, что катодные лучи представляют собой поток быстродвижущихся отрицательно заряженных частиц. Масса этих частиц примерно в 1840 раз меньше массы атома водорода и составляет 0,00055 а. е. м. Определение величины заряда показало, что каждая частица имеет отрицательный заряд, равный 4,8•10-10 абсолютной электростатической единицы или 1,60•10-19 Кл. Эти частицы получили название электроны. Следовательно, электроны представляют собой мельчайшие частицы, несущие отрицательный заряд.

Возникновение катодных лучей наблюдается в газоразрядных трубках с катодом, изготовленным из самых разнообразных материалов. Это свидетельствует о том, что электроны входят в состав различных атомов.
Электроны излучаются из веществ (эмитируют) не только в разрядных трубках. Многие вещества испускают электроны под действием ультрафиолетовых, или рентгеновских, лучей. Щелочные металлы испускают электроны уже при воздействии на них видимого света. Испускание электронв наблюдается также при нагревании многих металлов.
Если поток быстрых электронов встречает препятствие, то в результате столкновения возникает излучение, называемое рентгеновским.

При ударе электронов об анод и возникают рентгеновские лучи. Эти лучи не отклоняются ни в электрическом, ни в магнитном поле и представляют собой электромагнитные волны очень малой длины. Самая длинная рентгеновская волна почти в 200 раз короче самой короткой волны видимого света.
Рентгеновские лучи обладают способностью ионизировать газы. Под действием рентгеновских лучей часть электронейтральных молекул газов теряет электроны, превращаясь в положительно заряженные ионы, а часть присоединяет электроны, превращаясь в отрицательно заряженные ионы. Вызываемая рентгеновскими лучами ионизация газов свидетельствует о сложности строения атомов.
Способность электролитов в растворённом или расплавленном состоянии проводить электрический ток также свидетельствует об их ионизации и, следовательно, о сложности атомов.
Очень важным для дальнейшего развития учения о строении атома было открытие явления радиоактивности. Французский учёный А. Беккерель обнаружил, что соединения урана являются источником излучения, которое действует на фотографическую пластинку, ионизирует воздух, проникает через непрозрачные тела.
Исследования Беккереля продолжили М. Склодовская-Кюри и П. Кюри. Эти учёные открыли в урановой руде два новых элемента — радий и полоний, обладающие высокой активностью излучения. Способность к излучению была обнаружена также у тория, актиния и ряда других элементов. Это свойство получило название радиоактивность. Было доказано, что интенсивность излучения пропорциональна количеству радиоактивного элемента независимо от того, входит ли он в состав соединений или находится в виде простого вещества. Следовательно, радиоактивность является общим свойством атомов элементов.
Исследование лучей радия показало, что они имеют сложный характер. В электрическом и магнитном полях пучок лучей радия расщепляется на три пучка, которые были названы -,- и-лучами (рис. 3). -Лучи в электрическом поле отклоняются от прямолинейного направления движения в сторону отрицательно заряженной пластинки. Оказалось, что они представляют собой поток положительно заряженных частиц, вылетающих из атома со скоростью около 20000 км/с. Масса каждой такой частицы равна 4 а. е. м., а положительный заряд вдвое больше заряда электрона. -Частицы, следовательно, являются ионами гелия, несущими заряд +2.


-Лучи, подобно катодным в электрическом поле, отклоняются в направлении положительно заряженной пластинки. Было установлено, что -лучи представляют собой поток электронов, имеющих скорость от 100000 до 300000 км/с. Как -, так и -лучи легко поглощаются различными материалами.
-Лучи, как и рентгеновские лучи, не изменяют своего направления ни в электрическом, ни в магнитном поле. Подобно видимому свету и рентгеновским лучам, -лучи являются электромагнитными волнами очень малой длины. Поэтому они легко проникают через различные материалы.
Обстоятельное изучение свойств радия показало, что во время радиоактивного излучения он распадается, образуя два новых элемента: гелий и радон. Происходит превращение атомов одного элемента в атомы других элементов. Таким образом, ионизация идкостей и газов и особенно явление радиоактивности убедительно доказывают, что атомы не являются неделимыми, а состоят из более простых частиц.


Принимая во внимание изложенное выше, а также электронейтральность атома, следует заключить, что в нём должна находиться положительно заряженная составная часть, заряд которой уравновешивает отрицательные заряды электронов. Эта положительно заряжнная часть атома, открытая в 1911 г. английским физиком Э. Резерфордом, была названа ядром атома.
Резерфорд изучал траектории полёта -частиц, бомбардирующих листки золотой фольги толщиной около 0,0005 мм. Учёный обнаружил, что подавляющее большинство -частиц, пройдя через фольгу, продолжало двигаться в прежнем направлении. Небодьшая часть -частиц отклонялась от своего пути на различные углы, а отдельные частицы начинали двигаться в противоположном направлении. Это явление известно под названием рассеяние -частиц (рис. 4). Такое поведение -частиц можно объяснить лишь тем, что они, проходя через металл, как бы наталкивались на положительно заряженную часть атома — ядро, масса которого больше массы -частицы, и попадали в поле действия кулоновских сил отталкивания. (Столкновение с электроном не может существенно отразиться на траектории -частицы, так как масса электрона (9,1•10-18 г) почти в 7500 раз меньше -частицы.)



Проходя через фольгу, -частицы встречают на своём пути множество атомов металла, но отклоняются от первоначального пути очень редко (отклоняется только одна из ста тысяч -частиц, прошедших через фольгу). Это можно объяснить лишь тем, что размеры ядра очень малы по сравнению с размерами атома и вероятность того, что траектория полёта -частицы пройдёт через ядро, очень мала. Основная масса -частиц пролетает сквозь атом, не меняя направления движения.
Если предположить, что атом, ядро и электрон имеют форму шара, то диаметр атома будет равен примерно 10-8 см, а диаметр ядра — 10-13 см, т. е. ядро занимает примерно 1/1015 часть объёма атома. Если для наглядности представить себе атом увеличенным до размеров шара диаметром 100 м (высота тридцатиэтажного дома), то ядро атома в этом случае имело бы диаметр не более 1 мм. В то же время масса атома фактически сосредоточена в ядре. Следовательно, плотность атомных ядер очень велика. Если бы можно было собрать 1 см3 атомных ядер, то их масса оказалась бы равной приблизительно 116 млн. т.
Э. Резерфорд предложил планетарную модель атома, согласно которой ядро находится в центре атома, а электроны вращаются вокруг ядра подобно планетам, вращающимся вокруг Солнца. Заряды электронов уравновешиваются положительным зарядом ядра, и атом в целом остаётся электронейтральным. Возникающая вследствие вращения электронов центробежная сила уравновешивается электростатическим притяжением электронов к противоположно заряженному ядру.
Опыты по рассеянию -частиц позволили не только установить существование атомного ядра, но и определить его заряд. Оказалось, что положительный заряд ядра атома численно равен порядковому номеру элемента в периодической сиситеме. Следовательно, порядковый номер элемента не просто регистрирует его положение в периодической системе, а является важнейшей константой элемента, выражающей положительный заряд ядра его атома. Из электронейтральности атома следует, что и количество вращающихся вокруг ядра электронов равно порядковому номеру элемента. Таков физический смысл порядкового номера элемента в Периодической системе элементов.
Создание Резерфордом планетарной, или ядерной, модели атома было крупным шагом вперёд в познании строения атома. Но в некоторых случаях эта теория вступала в противоречие с твёрдо установленными фактами.
Так, планетарная модель не могла объяснить устойчивости атома. Вращаясь вокруг ядра, электрон должен часть своей энергии испускать в виде электромагнитных кол***ий, что должно привести к нарушению равновесия между электростатическим притяжением электрона к ядру и центробежной силой, обусловленной вращением электрона вокруг ядра. Для восстановления равновесия электрон должен переместиться ближе к ядру. Следовательно, непрерывно излучая электромагнитную энергию, электрон должен постепенно приближаться к ядру и в конце концов упасть на него — существование атома должно прекратиться. В действительности атом очень устойчив и может существовать бесконечно долго.
Модель Резерфорда не могла объяснить также характер атомного спектра. Известно, что солнечный свет, проходя через стеклянную призму, образует спектр — цветную полосу, содержащую все цвета радуги. Это явление объясняется тем, что солнечный свет состоит из электромагнитных волн различных частот. Волны различных частот неодинаково преломляются призмой, что приводит к образованию сплошного спектра. Аналогично ведёт себя свет, излучаемый раскалёнными жидкостями и твёрдыми телами. Спектр раскалённых газов и паров представляет собой отдельные цветные линии, разделённые тёмными промежутками, — линейчатый спектр. При этом атомы одного элемента дают вполне определённый спектр, отличающийся от спектра другого элемента.


Линейчатый характер спектра водорода не согласуется с теорией Резерфорда, так как излучающий энергию электрон должен приближаться к ядру непрерывно, и его спектр должен быть непрерывным, сплошным.
Следовательно, планетарная модель атома не могла объяснить ни устойчивости атомов, ни линейчатый характер спектра газов и паров.

Дополнительно по данной категории

18.01.2013 - Работа с ядохимикатами
27.11.2009 - Периодическая система элементов Менделеева.
27.11.2009 - Периодический закон Д. И. Менделеева.
27.11.2009 - Структура электронной оболочки многоэлектронного атома.
27.11.2009 - Форма электронных облаков.
Нет комментариев. Почему бы Вам не оставить свой?
Ваше сообщение будет опубликовано только после проверки и разрешения администратора.
Ваше имя:
Комментарий:
Смайл - 01 Смайл - 02 Смайл - 03 Смайл - 04 Смайл - 05 Смайл - 06 Смайл - 07 Смайл - 08 Смайл - 09 Смайл - 10 Смайл - 11 Смайл - 12 Смайл - 13 Смайл - 14 Смайл - 15 Смайл - 16 Смайл - 17 Смайл - 18
Секретный код:
Секретный код
Повторить:

Поиск по сайту

Поиск

Авторизация


Добро пожаловать,
Аноним

Регистрация или входРегистрация или вход
Потеряли пароль?Потеряли пароль?

Ник:
Пароль:


Содержание:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Правообладателям
Образование